Short note

Partial widths for the decays $\eta(1295) ightarrow \gamma\gamma$ and $\eta(1440) ightarrow \gamma\gamma$

A.V. Anisovich¹, V.V. Anisovich¹, V.A. Nikonov¹, L. Montanet²

¹ St.Petersburg Nuclear Physics Institute, Gatchina, 188350, Russia

² CERN, 1211 Geneva 23, Switzerland

Received: 24 September 1999 Communicated by B. Povh

Abstract. We discuss $\gamma\gamma$ partial widths of pseudoscalar/isoscalar mesons $\eta(M)$ in the mass region $M \sim 1000 - 1500$ MeV. The transition amplitudes $\eta(1295) \rightarrow \gamma\gamma$ and $\eta(1440) \rightarrow \gamma\gamma$ are studied within an assumption that the decaying mesons are the members of the first radial excitation nonet $2^1 S_0 q\bar{q}$. The calculations show that partial widths being of the order of 0.1 keV are dominantly due to the $n\bar{n}$ meson component while the contribution of the $s\bar{s}$ component is small.

PACS. 14.40.Aq π , K, and η mesons – 13.40.Hq Electromagnetic decays

The two-photon decays of the pseudoscalar mesons served a great deal of information on the structure of the basic $1^1S_0q\bar{q}$ nonet. The value of the partial width $\pi^0 \to \gamma\gamma$ gave one of the first experimental evidence for colour structure of quarks. The decays $\eta \to \gamma\gamma$ and $\eta' \to \gamma\gamma$ provide an information on the quark/gluon content of these mesons.

The partial $\gamma\gamma$ -widths of pseudoscalar mesons belonging to the basic nonet $1^1S_0q\bar{q}$ are relatively large: $\Gamma_{\pi^0\to\gamma\gamma} = 7.2 \pm 0.5 \text{ eV}, \ \Gamma_{\eta\to\gamma\gamma} = 0.46 \pm 0.04 \text{ keV}, \ \Gamma_{\eta'\to\gamma\gamma} = 4.27 \pm 0.19 \text{ keV}$ [1] thus giving a possibility to mesure not only partial widths but transition form factors $\pi^0 \to \gamma^*(Q^2)\gamma, \ \eta \to \gamma^*(Q^2)\gamma, \ \eta' \to \gamma^*(Q^2)\gamma$ over a broad range of photon virtualities, $Q^2 \leq 20 \text{ GeV}^2$ [2]. These data made it possible [3]:

(i) to restore the wave functions of η and η' (for both $n\bar{n}$ and $s\bar{s}$ components),

(ii) to estimate the gluonium admixture in η and η' ,

(iii) to restore the vertex function for the transition $\gamma \rightarrow q\bar{q}$ (or photon wave function) as a function of the $q\bar{q}$ invariant mass.

The same method as used in [3] for the analysis of the basic pseudoscalar mesons can be applied for a study of $\gamma\gamma$ decays of the first radial excitation mesons: in the present paper we discuss these processes.

The search for exotics in the pseudoscalar/isoscalar sector ultimately requires the investigation of η -mesons of the $2^1S_0q\bar{q}$ nonet: in the framework of this investigation program, here we calculate partial widths $\eta(1295) \rightarrow \gamma\gamma$ and $\eta(1440) \rightarrow \gamma\gamma$ under the assumption that the mesons $\eta(1295)$ and $\eta(1440)$ are members of the $2^1S_0q\bar{q}$ nonet. The state $\eta(1440)$ (old name is E(1407) [4]) attracts our special attention: it is considered during long time as a state with possible rich gluonic component.

Transition form factors and partial widths

A partial width for the decay $\eta(M) \to \gamma\gamma$ is determined as $\Gamma_{\eta(M)\to\gamma\gamma} = \pi\alpha^2 M^3 F_{\eta(M)\to\gamma\gamma}^2(0)/4$, where M(M) is the mass of the η -meson, $\alpha = 1/137$, and $F_{\eta(M)\to\gamma\gamma}(0)$ is the form factor of the considered decay.

In [3], the form factor $F_{\eta \to \gamma^* \gamma}(Q^2)$ was calculated for the virtual photon $\gamma^*(Q^2)$; the decay form factor is given by the limit $Q^2 \to 0$. The decay form factor $F_{\eta(M)\to\gamma\gamma}(0)$ reads [3]:

$$F_{\eta(M) \to \gamma\gamma}(0) = \frac{1}{6\sqrt{3}\pi^3} \int \frac{dx d^2 k_{\perp}}{x(1-x)^2}$$
(1)

$$\times \left[\frac{5m}{\sqrt{2}}\cos\phi\,\Psi_{n\bar{n}}(s)\Psi_{\gamma\to n\bar{n}}(s) + m_s\sin\phi\,\Psi_{s\bar{s}}(s)\Psi_{\gamma\to s\bar{s}}(s)\right].$$

Two terms in the square brackets refer to $n\bar{n}$ and $s\bar{s}$ components of the $\eta(M)$ -meson. The flavour wave function is determined as $\psi_{\eta}(M) = \cos \phi \ n\bar{n} + \sin \phi \ s\bar{s}$ where ϕ is mixing angle and $n\bar{n} = (u\bar{u} + d\bar{d})/\sqrt{2}$; m and m_s are masses of the non-strange and strange constituent quarks.

The wave functions for $n\bar{n}$ and $s\bar{s}$ components are written as $\Psi_{n\bar{n}}(s)$ and $\Psi_{s\bar{s}}(s)$ where s is $q\bar{q}$ invariant mass squared. In terms of the light cone variables (x, \mathbf{k}_{\perp}) , the $q\bar{q}$ invariant mass reads $s = (m^2 + k_{\perp}^2)/x(1-x)$. The photon wave function $\Psi_{\gamma \to q\bar{q}}(s)$ was found in [3]: it is shown in Fig. 1a.

Fig. 1. (a) Photon wave function $\Psi_{\gamma \to n\bar{n}}(k^2) = g_{\gamma}(k^2)/(k^2 + m^2)$, where $k^2 = s/4 - m^2$; the wave function for $s\bar{s}$ component is obtained by replacement $m \to m_s$. (b) Form factors $F_{n\bar{n}\to\gamma\gamma}^{(0)}(0)$ and $F_{s\bar{s}\to\gamma\gamma}^{(0)}(0)$ as functions of mean radius squared of η -meson. Solid curves present calculations with use parametrization (5); the rhombuses give values calculated with use the wave functions found in [3]

Wave functions of $\eta(M)$ -mesons

We approximate wave functions of the $\eta(M)$ -mesons in the one-parameter exponential form. For the basic multiplet and first radial excitation nonet, the wave functions are determined as follows:

$$\Psi_{\eta}^{(0)}(s) = Ce^{-bs}, \quad \Psi_{\eta}^{(1)}(s) = C_1(D_1s - 1)e^{-b_1s}.$$
 (2)

The parameters b and b_1 are related to the radii squared of corresponding $\eta(M)$ -meson. Then the other constants (C, C_1, D_1) are fixed by the normalization and orthogonality conditions:

$$\Psi_{\eta}^{(0)} \otimes \Psi_{\eta}^{(0)} = 1, \quad \Psi_{\eta}^{(1)} \otimes \Psi_{\eta}^{(1)} = 1, \quad \Psi_{\eta}^{(0)} \otimes \Psi_{\eta}^{(1)} = 0.$$
(3)

The convolution of the η -meson wave function at $q_{\perp} \neq 0$ determines form factor of the η -meson, $f_{\eta}^{(n)}(q_{\perp}^2) = \left[\Psi_{\eta}^{(n)} \otimes \Psi_{\eta}^{(n)}\right]_{q_{\perp} \neq 0}$ thus allowing us to relate the parameter b (or b_1) at small q_{\perp}^2 to η -meson radius squared: $f_{\eta}(q_{\perp}^2) \simeq 1 - \frac{1}{6}R_{\eta}^2q_{\perp}^2$. The η -meson form factor reads [3]:

$$f_{\eta}(q_{\perp}^{2}) = \frac{1}{16\pi^{3}} \int \frac{dxd^{2}k_{\perp}}{x(1-x)^{2}} \Psi_{\eta}^{(n)}(s)\Psi_{\eta}^{(n)}(s') \\ \times \left[\alpha(s+s'-q^{2})+q^{2}\right], \\ \alpha = \frac{s+s'-q^{2}}{2(s+s')-\frac{(s'-s)^{2}}{q^{2}}-q^{2}}$$
(4)

where $s' = (m^2 + (\mathbf{k}_{\perp} - x\mathbf{q}_{\perp})^2)/x(1-x)$. When working with a simple one-parameter wave function representation of Eqs. (2) and (3), it is instructive to compare the

results with those obtained using more precise wave function patametrization; such a comparison can be done for basic $2^1S_0q\bar{q}$ nonet. The η and η' wave functions (or those for its $n\bar{n}$ and $s\bar{s}$ components) were found in [3] basing on the data for the transitions $\eta \to \gamma\gamma^*(Q^2)$, $\eta \to \gamma\gamma^*(Q^2)$ at $Q^2 \leq 20 \text{ GeV}^2$. The calculated decay form factors $F_{n\bar{n}\to\gamma\gamma}^{(0)}(k^2)$ and $F_{s\bar{s}\to\gamma\gamma}^{(0)}(k^2)$ for these wave functions are marked in Fig. 1b by rhombuses. The wave functions of [3] give the following mean radii squared for $n\bar{n}$ and $s\bar{s}$ components: $R_{n\bar{n}}^2 = 13.1 \text{ GeV}^{-2}$ and $R_{s\bar{s}}^2 = 11.7 \text{ GeV}^{-2}$; in Fig. 1b we have drawn rhombuses for these values of radii. Solid curves in Fig. 1b represent $F_{n\bar{n}\to\gamma\gamma}^{(0)}(0)$ and $F_{s\bar{s}\to\gamma\gamma}^{(0)}(0)$ calculated by using the simple exponential parametrization (2): we see that both calculations coincide with each other within reasonable accuracy. The coincidence of the results justifies the exponential approximation for the calculation of transition form facrors at $q_{\perp}^2 \sim 0$.

Results

The Fig. 2a demonstrates calculation results for the transition form factors $n\bar{n} \rightarrow \gamma\gamma$ and $s\bar{s} \rightarrow \gamma\gamma$ when these components refer to η -mesons of the first radial excitation multiplet. The form factor for the $n\bar{n}$ component, $F_{n\bar{n}\rightarrow\gamma\gamma}^{(1)}(0)$, depends strongly on the mean radius squared, increasing rapidly in the region $R_{n\bar{n}}^2 \sim 14-24 \text{ GeV}^{-2}$ (0.7- 1.2 fm^2). As for $s\bar{s}$ component, the form factor $F_{s\bar{s}\rightarrow\gamma\gamma}^{(1)}(0)$ is small; it changes sign at $R_{s\bar{s}}^2 \simeq 15 \text{ GeV}^{-2}$. Therefore, one can neglect the contribution of the $s\bar{s}$ component into

Fig. 2. (a) The transition form factors $F_{n\bar{n}\to\gamma\gamma}^{(1)}$ and $F_{s\bar{s}\to\gamma\gamma}^{(1)}$ as functions of the meson radius squared, R^2 . (b) The partial widths $\Gamma_{n\bar{n}\to\gamma\gamma}^{(1)}$ and $\Gamma_{s\bar{s}\to\gamma\gamma}^{(1)}$ for $\eta(1295)$ and $\eta(1440)$ as functions of R^2

 $\gamma\gamma$ decay. Then

$$\Gamma_{\eta(M)\to\gamma\gamma} \simeq \frac{\pi}{4} \alpha^2 M^3 \cos^2 \phi F_{n\bar{n}\to\gamma\gamma}^{(1)\,2} = \cos^2 \phi \Gamma_{n\bar{n}\to\gamma\gamma}^{(1)}(0),$$
⁽⁵⁾

where $\cos^2 \phi$ is a probability for $n\bar{n}$ component in the $\eta(M)$ meson. The calculated values $\Gamma_{n\bar{n}}^{(1)} \gamma\gamma$ for $\eta(1295)$ and $\eta(1440)$ are shown in Fig. 2b as functions of $R_{n\bar{n}}^2$. A significant difference of widths $\Gamma_{n\bar{n}}^{(1)} \gamma\gamma$ for $\eta(1295)$ and $\eta(1440)$ is due to a strong dependence of partial width on the η -meson mass, $\Gamma_{\eta(M)} \gamma\gamma \sim M^3$.

Conclusion

We calculate the $\gamma\gamma$ partial width for $\eta(1295)$ and $\eta(1440)$ supposing these mesons to be members of the first radial excitation nonet $2^1S_0q\bar{q}$. The calculation technique is based on that developed in [3] for the transition of mesons from basic nonet $1^1S_0q\bar{q}$ into $\gamma^*(Q^2)\gamma$. The $\gamma\gamma$ partial widths of $\eta(1295)$ and $\eta(1440)$ are mainly determined by the flavour component $n\bar{n} = (u\bar{u} + d\bar{d})/\sqrt{2}$ so $\Gamma_{\eta(1295)\to\gamma\gamma} + \Gamma_{\eta(1440)\to\gamma\gamma} \simeq \Gamma_{n\bar{n}}^{(1)}$. Partial widths strongly depend on the meson radii squared: $\Gamma_{\eta(1295)\to\gamma\gamma} + \Gamma_{\eta(1440)\to\gamma\gamma} \simeq 0.04$ keV at $R_{\eta(X)}^2/R_{\pi}^2 \leq 1.5$ and $\Gamma_{\eta(1295)\to\gamma\gamma} + \Gamma_{\eta(1440)\to\gamma\gamma} \simeq 0.2$ keV at $R_{\eta(X)}^2/R_{\pi}^2 \simeq 2$.

The paper was partly supported by the RFBR grant $98\mathchar`-02\mathchar`-17236.$

References

- 1. C. Caso, et al. (PDG), Eur. Phys. J. C 3, 1 (1998)
- 2. H.J.Behrend, et al. (CELLO), Z. Phys. C 49, 401 (1991); H.Aihara, et al. (TCP/2 γ), Phys. Rev. Lett. 64, 172 (1990)
- V. V. Anisovich, D. I. Melikhov, V. A. Nikonov, Phys. Rev. D 55, 2918 (1997)
- P. Baillon, et al. (CERN-CdF), Nuovo. Cim. A 50, 393 (1967)